Quadrilaterals and Their Properties

A 4-gon Hypothesis Lesson 15-1 Kites and Triangle Midsegments

Learning Targets:

- Develop properties of kites.
- Prove the Triangle Midsegment Theorem.

SUGGESTED LEARNING STRATEGIES: Discussion Groups, Shared Reading, Create Representations, Think-Pair-Share, Interactive Word Wall, Group Presentations

Mr. Cortez, the owner of a tile store, wants to create a database of all of the tiles he sells in his store. All of his tiles are quadrilaterals, but he needs to learn the properties of different quadrilaterals so he can correctly classify the tiles in his database.

Mr. Cortez begins by exploring convex quadrilaterals. The term *quadrilateral* can be abbreviated "quad."

- Given quad *GEOM*.
 a. List all pairs of opposite sides.
 - **b.** List all pairs of consecutive sides.
 - **c.** List all pairs of opposite angles.
 - **d.** List all pairs of consecutive angles.
 - **e.** Draw the diagonals, and list them.

Activity 15 • Quadrilaterals and Their Properties

205

ACTIVITY 15

ACTIVITY 15

continued

A	kite	is a quadrilateral	with exactly t	wo distinct	pairs of cong	gruent consecuti	ve
sic	les.						

- **2.** Given quad *KITE* with $\overline{KI} \cong \overline{KE}$ and $\overline{IT} \cong \overline{ET}$.
 - **a.** One of the diagonals divides the kite into two congruent triangles. Draw that diagonal and list the two congruent triangles. Explain how you know the triangles are congruent.
 - **b.** Draw the other diagonal. Explain how you know the diagonals are perpendicular.
 - **c.** Complete the following list of properties of a kite. Think about the angles of a kite as well as the segments.
 - **1.** Exactly two pairs of consecutive sides are congruent.
 - **2.** One diagonal divides a kite into two congruent triangles.
 - **3.** The diagonals of a kite are perpendicular.
 - 4.
 - 5.
 - 6.
- **3. Critique the reasoning of others.** Mr. Cortez says that the diagonals of a kite bisect each other. Is Mr. Cortez correct? Support your answer with a valid argument.

- 4. Why is a square not considered a kite?
- **5.** Suppose \overline{AC} and \overline{BD} are the diagonals of a kite. What is a formula for the area of the kite in terms of the diagonals?

Lesson 15-1 Kites and Triangle Midsegments

The segment whose endpoints are the midpoints of two sides of a triangle is called a *midsegment*.

Triangle Midsegment Theorem The midsegment of a triangle is parallel to the third side, and its length is one-half the length of the third side.

6. Use the figure and coordinates below to complete the coordinate proof for the Triangle Midsegment Theorem.

a. Complete the hypothesis and conclusion for the Triangle Midsegment Theorem.

Hypothesis: *M* is the midpoint of _____.

N is the midpoint of _____.

Conclusion: *MN* || _____

MN =_____

- **b.** Find the coordinates of midpoints *M* and *N* in terms of *a*, *b*, *c*, *h*, *k*, and *l*.
- **c.** Find the slope of \overline{AC} and \overline{MN} .
- **d.** Simplify your response to part c and explain how your answers to part c show $\overline{MN} \mid \mid \overline{AC}$.

ACTIVITY 15

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Slope of \overline{AB} : $m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$

Distance Formula:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- **e.** Find *AC* and *MN*.
- **f.** Simplify your response to part e and explain how your answers to part e show that $MN = \frac{1}{2}AC$.

Check Your Understanding

- 7. Are the midsegments of an isosceles triangle congruent? Explain.
- **8.** Given *DE* || *AC*. Is *DE* a midsegment of triangle *ABC*? Explain.

LESSON 15-1 PRACTICE

- **9.** *XY* is a midsegment of triangle *DEF*. Find each measure.
 - XY =DX = _____
 - YF = _____

- 17
- **10.** *QR* is a midsegment of triangle *WYZ*. Find each measure. *W*

QR =_____

- 11. Make sense of problems. Figure ABCD is a kite with diagonals BD and AC. Complete each statement.
 - $BD \perp$ _____ $\triangle ABC \cong \triangle$ _____ $\angle ABC \cong \angle$ $\overline{AB} \cong$ $\angle BAC \cong \angle$

Learning Targets:

- Develop properties of trapezoids.
- Prove properties of trapezoids.

SUGGESTED LEARNING STRATEGIES: Visualization, Shared Reading, Create Representations, Think-Pair-Share, Interactive Word Wall

A *trapezoid* is a quadrilateral with exactly one pair of parallel sides. The parallel sides of a trapezoid are called *bases*, and the nonparallel sides are called *legs*. The pairs of consecutive angles that include each of the bases are called *base angles*.

1. Sketch a trapezoid and label the vertices *T*, *R*, *A*, and *P*. Identify the bases, legs, and both pairs of base angles.

The *median of a trapezoid* is the segment with endpoints at the midpoint of each leg of the trapezoid.

Trapezoid Median Theorem The median of a trapezoid is parallel to the bases and its length is the average of the lengths of the bases.

Given: Trapezoid *EFGH* \overline{MN} is a median.

Prove: $\overline{MN} \parallel \overline{FG}$ and $MN \parallel EH$

$$MN = \frac{1}{2}(FG + EH)$$

2. Draw one diagonal in trapezoid *EFGH*. Label the intersection of the diagonal with \overline{MN} as *X* and explain below how the Triangle Midsegment Theorem can be used to justify the Trapezoid Median Theorem.

The British use the term *trapezium* for a quadrilateral with exactly one pair of parallel sides and the term *trapezoid* for a quadrilateral with no parallel sides. They drive on a different side of the road, too.

- **3.** Given trapezoid *EFGH* and *MN* is a median. Use the figure in Item 2, properties of trapezoids, and/or the Trapezoid Median Theorem for each of the following.
 - **a.** If $m \angle GFE = 42^\circ$, then $m \angle NME = _$ and $m \angle MEH = _$.
 - **b.** Write an equation and solve for *x* if FG = 4x + 4, EH = x + 5, and MN = 22.
 - **c.** Find *FG* if MN = 19 and EH = 12.
- **4. Make use of structure.** What property or postulate allowed you to draw the auxiliary line in Item 2?

Check Your Understanding

- 5. How does a trapezoid differ from a kite?
- 6. Can a trapezoid have bases that are congruent? Explain.

An *isosceles trapezoid* is a trapezoid with congruent legs.

7. Given $\triangle ABC$ is isosceles with AB = CB and AD = CE.

- **a.** $\angle A \cong$ _____. Explain.
- **b.** Explain why $\triangle BDE$ is isosceles.
- **c.** *AC* || _____. Explain.
- **d.** Explain why quad *ADEC* is an isosceles trapezoid.
- **e.** $\angle ADE \cong$ _____. Explain.

Lesson 15-2 Trapezoids

f. Complete the theorem.

The base angles of an isosceles trapezoid are _____.

- **8.** On grid paper, plot quad *COLD* with coordinates *C*(1, 0), *O*(2, 2), *L*(5, 3), and *D*(7, 2).
 - **a.** Show that quad *COLD* is a trapezoid.
 - **b.** Show that quad *COLD* is isosceles.
 - **c.** Identify and find the length of each diagonal.
 - **d.** Based on the results in part c, complete the theorem. The diagonals of an isosceles trapezoid are _____.
- **9.** At this point, the theorem in Item 8 is simply a conjecture based on one example. Given the figure below, write the key steps for a proof of the theorem. Hint: You may want to use a pair of overlapping triangles and the theorem from Item 8 as part of your argument.

Hypothesis:CORE is a trapezoid. $\overline{CO} \cong \overline{ER}$ Conclusion: $\overline{CR} \cong EO$

	ACTIVITITS											
					×1	2.6	со	ntin	uec	1		
	3.8			÷.,								
		12										
	Ν	lv N	lote	S								
5),												
۵												
C												
1												
L												

ACTIVITY 15

© 2015 College Board. All rights reserved.

Check Your Understanding

10. Given quad *PLAN* is an isosceles trapezoid, use the diagram below and the properties of isosceles trapezoids to find each of the following.

- **a.** $\angle LPN \cong$ _____
- **b.** If $m \angle PLA = 70^{\circ}$, then $m \angle LPN = _$ and $m \angle PNA = _$.
- **c.** Write an equation and solve for *x* if AP = x and NL = 3x 8.

LESSON 15-2 PRACTICE

11. \overline{UV} is a midsegment of trapezoid *QRST*. Find each measure.

12. Reason abstractly. \overline{EF} is a midsegment of isosceles trapezoid *ABCD*. Find each measure.

Learning Targets:

- Develop properties of parallelograms.
- Prove properties of parallelograms.

SUGGESTED LEARNING STRATEGIES: Visualization, Create Representations, Think-Pair-Share, Interactive Word Wall, Discussion Groups

A *parallelogram* is a quadrilateral with both pairs of opposite sides parallel. For the sake of brevity, the symbol \square can be used for parallelogram.

1. Given $\square KATY$ as shown.

into _____.

- **a.** Which angles are consecutive to $\angle K$?
- **b.** Use what you know about parallel lines to complete the theorem.

Consecutive angles of a parallelogram are _____

- **2. Express regularity in repeated reasoning.** Use three index cards and draw three different parallelograms. Then cut out each parallelogram. For each parallelogram, draw a diagonal and cut along the diagonal to form two triangles. What do you notice about each pair of triangles?
- **3.** Based upon the exploration in Item 2, complete the theorem. Each diagonal of a parallelogram divides that parallelogram

- 4. Given parallelogram *DIAG* as shown above. Complete the theorems.a. Opposite sides of a parallelogram are _____.
 - **b.** Opposite angles of a parallelogram are _____.
 - **c.** Prove the theorem you completed in part a. Use the figure in Item 3.

d. Prove the theorem you completed in part b. Use the figure in Item 3.

MATH TERMS

A **corollary** is a statement that results directly from a theorem.

CONNECT TO AP

Theorems are key to the development of many branches of mathematics. In calculus, two theorems that are frequently used are the Mean Value Theorem and the Fundamental Theorem of Calculus.

214 SpringBoard[®] Mathematics Geometry, Unit 2 • Transformations, Triangles, and Quadrilaterals

Lesson 15-3

Parallelograms

- **5.** Explain why the theorems in Item 4 can be considered as *corollaries* to the theorem in Item 3.
- **6.** Given *□LUCK*, use the figure and the theorems in Items 1, 3, and 4 to find the following.

- **a.** $\triangle KCL \cong$ _____
- **b.** Solve for x if $m \angle KCU = 10x 15$ and $m \angle K = 6x + 3$.
- **c.** Solve for x and y if KL = 2x + y, LU = 7, UC = 14, and KC = 5y 4x.

Theorem: The diagonals of a parallelogram bisect each other.

- **7. a.** Rewrite the above theorem in "if-then" form.
 - **b.** Draw a figure for the theorem, including the diagonals. Label the vertices and the point of intersection for the diagonals. Identify the information that is "given" and what is to be proved.

Given:

Prove:

c. Write a two-column proof for the theorem.

ACTIVITY 15

continued

Check Your Understanding

- 8. Why are trapezoids and kites not parallelograms?
- **9.** The measure of one angle of a parallelogram is 68°. What are the measures of the other three angles of the parallelogram?
- **10.** The lengths of two sides of a parallelogram are 12 in. and 18 in. What are the lengths of the other two sides?

LESSON 15-3 PRACTICE

11. *AC* and *DB* are diagonals of parallelogram *ABCD*. Find each measure.

12. Make sense of problems. One of the floor tiles that Mr. Cortez sells is shaped like a parallelogram. Find each measure of the floor tile.

© 2015 College Board. All rights reserved.

My Notes

Learning Targets:

- Develop properties of rectangles, rhombuses, and squares.
- Prove properties of rectangles, rhombuses, and squares.

SUGGESTED LEARNING STRATEGIES: Visualization, Create Representations, Think-Pair-Share, Interactive Word Wall, Discussion Groups

- A *rectangle* is a parallelogram with four right angles.
 - **1.** Given quad *RECT* is a rectangle. List all right triangles in the figure. Explain how you know the triangles are congruent.

- Complete the theorem.
 The diagonals of a rectangle are ______.
- **3.** Explain how you know the theorem in Item 2 is true.
- **4.** List all of the properties of a rectangle. Begin with the properties of a parallelogram.
- **5.** Given quad *PINK* is a rectangle with coordinates *P*(3,0), *I*(0,6), and *N*(8,10). Find the coordinates of point *K*.
- **6.** Given quad *TGIF* is a rectangle. Use the properties of a rectangle and the figure at right to find the following.

- **a.** If TX = 13, then $TI = _$ and $FG = _$
- **b.** Solve for x if TX = 4x + 4 and FX = 7x 23.
- **c.** Solve for x if $m \angle XFT = 6x 4$ and $m \angle XTG = 10x 2$.

Lesson 15-4 Rectangles, Rhombuses, and Squares

continued

Indirect proofs can be useful when the conclusion is a negative statement.

Example of an Indirect Proof

Given: $m \angle SCR \neq m \angle CSI$ **Prove:** $\Box RISC$ is not a rectangle.

Statements	Reasons				
1. $\Box RISC$ is a rectangle.	1. Assumption				
2. $m \angle SCR = m \angle CSI = 90^{\circ}$	2. Definition of a rectangle				
3. $m \angle SCR \neq m \angle CSI$	3. Given				
4. $\square RISC$ is not a rectangle.	4. The assumption led to a contradiction				
	between statements 2 and 3.				

7. Complete the missing reasons in this indirect proof.

Given: $WT \neq TS$ **Prove:** Quad *WISH* is not a \square .

Statements	Reasons
1. \square WISH	1.
2. \overline{WS} and \overline{HI} bisect each other.	2.
3. $WT = TS$ and $HT = TI$	3.
4. $WT \neq TS$	4.
5. Quad <i>WISH</i> is not a \square .	5.

Check Your Understanding

- **8.** What do rectangles, trapezoids, and kites have in common? How do they differ?
- 9. Tell whether each of the following statements is true or false.
 - **a.** All rectangles are parallelograms.
 - **b.** Some rectangles are trapezoids.
 - **c.** All parallelograms are rectangles.
 - **d.** All rectangles are quadrilaterals.

MATH TIP

My Notes

An indirect proof begins by assuming the opposite of the conclusion. The assumption is used as if it were given until a contradiction is reached. Once the assumption leads to a contradiction, the opposite of the assumption (the original conclusion) must be true.

		My Not	A <i>rhombus</i> is a parallelogram with four congruent sides.
			10. Graph quad <i>USMC</i> with coordinates $U(1, 1), S(4, 5), M(9, 5), \text{ and } C(6, 1) \text{ on the grid below.}$
			a. Verify that quad USMC is a parallelogram by finding the slope of each side.
			b. Verify that $\Box USMC$ is a rhombus by finding the length of each side.
			c. Find the slopes of the diagonals, \overline{MU} and \overline{SC} .
			 d. Use the results in part c to complete the theorem. The diagonals of a rhombus are 11. Given quad <i>EFGH</i> is a rhombus. a. List the three triangles that are congruent
			to $\triangle HXE$. b. Explain why $\angle EFX \cong \angle GFX$ and $\angle HGX \cong \angle FGX$. c
			c. Complete the theorem
			c. Complete the theorem.
			Each diagonal of a rhombus
			A formal proof for the theorem in Item 11 is left as an exercise.
			12. List all of the properties of a rhombus. Begin with the properties of a
			parallelogram.

Lesson 15-4 Rectangles, Rhombuses, and Squares

My Notes

Т

- 13. Given quad UTAH is a rhombus. Use the properties of a rhombus and the figure at right to find each of the following.
 - **a.** Solve for *x* if $m \angle UPT = 4x + 18$.
 - **b.** Solve for *x* and *y* if UT = 5x + 4, TA = 2x + y, HA = 2y - 8, and UH = 24.
 - **c.** Solve for *x* if $m \angle PAH = 8x + 2$ and $m \angle PAT = 10x 10$.

A *square* is a parallelogram with four right angles and four congruent sides.

- **14.** Alternate definitions for a square.
 - **a.** A square is a rectangle with
 - **b.** A square is a rhombus with

U

Н

P

- **15.** List all of the properties of a square.
- **16.** Match each region in the Venn diagram below with the correct term in the list.

kites	isoscele
polygons	quadrila
rhombi	squares

© 2015 College Board. All rights reserved.

sceles trapezoids adrilaterals ares parallelograms rectangles trapezoids

Α

D

Т

0

My Notes

В

С

65°

R

F

S

17. Model with mathematics. Mr. Cortez uses the table below to organize his findings before he enters information in the database. Place a check mark if the polygon has the given property.

		es	es	gles	sect	ıry	ır	es	Sides	Pair Sides
		ite Sid l	ite Sid 1ent	ite An 1ent	ials Bi other	cutive menta	ıals dicula	: Angl	gruent	' One osite (
 -	4 Sides	Oppos Paralle	Oppos	Oppos	Diagor Each C	Consec Angles Supple	Diagor Perpen	4 Right	4 Cong	Exactly of Opp Paralle
 Quadrilateral	~									
Kite										
 Trapezoid										
 Parallelogram										
Rectangle										
Rhombus										
 Square										

Check Your Understanding

- **18.** Tell whether each statement is true or false.
 - **a.** All squares are rectangles.
 - **b.** All rhombuses are squares.
 - **c.** All squares are parallelograms.
 - **d.** Some squares are kites.
 - e. No rhombuses are trapezoids.
- **19.** What do all rectangles, squares, and rhombuses have in common?

LESSON 15-4 PRACTICE

$m \angle DAB = $	$m \angle AEB = $
$m \angle ADC =$	$m \angle BEC = $
$m \angle BDC = $	$m \angle BCE = $
$m \angle BDA = $	

21. \overline{QS} and \overline{RT} are diagonals of rhombus *QRST*. Find each measure.

 $m \angle QSR = \underline{\qquad}$ $m \angle QST = \underline{\qquad}$ $m \angle QTS = \underline{\qquad}$

- $m \angle QZR =$ _____ $m \angle QTR =$ _____ $m \angle RZS =$ _____
- **22. Make sense of problems.** A diagonal of a square tile is 10 mm. What is the area of the tile?

Quadrilaterals and Their Properties

A 4-gon Hypothesis

ACTIVITY 15 PRACTICE

Write your answers on notebook paper. Show your work.

Lesson 15-1

- **1.** Tell whether each statement about kites is *always*, *sometimes*, or *never* true.
 - **a.** Exactly two pairs of consecutive sides are congruent.
 - **b.** The diagonals divide the kite into four congruent triangles.
 - **c.** The diagonals are perpendicular.
 - **d.** A kite is a parallelogram.
 - e. One diagonal bisects a pair of opposite angles.
 - **f.** A kite is a rhombus.

Lesson 15-2

© 2015 College Board. All rights reserved.

- **2.** Make a true statement by filling in each blank with *always*, *sometimes*, or *never*.
 - a. A trapezoid is _____ isosceles.
 - **b.** A trapezoid is ______ a quadrilateral.
 - **c.** The length of the median of a trapezoid is ______ equal to the sum of the lengths of the bases.
 - **d.** Trapezoids _____ have a pair of parallel sides.
 - **e.** Trapezoids <u>have two pairs of supplementary consecutive angles.</u>
- **3.** Given quad *GHJK* is a trapezoid. \overline{PQ} is the median.

- **a.** If HJ = 40 and PQ = 28, find GK.
- **b.** If HJ = 5x, PQ = 5x 9, and GK = 3x + 2, then solve for *x*.

4. Given quad *JONE* is a trapezoid.

b. If $\overrightarrow{OJ} \cong \overrightarrow{NE}$, then $\overrightarrow{OE} \cong$ _____. **c.** If $\overrightarrow{OJ} \cong \overrightarrow{NE}$, then $\angle NEJ \cong$ _____.

Lesson 15-3

5. Quadrilateral *XENA* is a parallelogram. *T* is the point of intersection of the diagonals. For each situation, write an equation and solve for *y*.

- **a.** EN = 5y + 1 and AX = 8y 5
- **b.** $m \angle ANX = 3y 1$ and $m \angle NXE = 2y + 1$
- **c.** ET = y 1 and EA = 3y 10
- **d.** $m \angle ANE = 7y 5$ and $m \angle NEX = 3y + 5$
- **6.** *M* is the fourth vertex of a parallelogram. The coordinates of the other vertices are (6, 4), (8, 1), and (2, 0). *M* can have any of the following coordinates except:

A. (6, −2)	B. (12, 5)
C. (4, −3)	D. (0, 3)

- Given quad *QRST* with coordinates *Q*(0, 0), *R*(2, 6), *S*(12, 6), and *T*(12, 0).
 - **a.** What is the best name for quad *QRST*? Explain.
 - **b.** Find the coordinates of the midpoint for each side of quad *QRST* and label them *M*, *N*, *O*, and *P*. What is the best name for quad *MNOP*? Explain.

Quadrilaterals and Their Properties A 4-gon Hypothesis

Lesson 15-4

- **8.** Given quad *WHAT* with vertices *W*(2, 4), *H*(5, 8), *A*(9, 5), and *T*(6, 1). What is the best name for this quadrilateral?
 - **A.** parallelogram**C.** rectangle
- **B.** rhombus **D.** square
- **9.** Given quad *ABCD* is a rhombus and $m \angle ABD = 32^{\circ}$. Find the measure of each numbered angle.

10. Given quad *RIGH* is a rectangle.

- **a.** If RT = 18, then RG =_____.
- **b.** If RG = 4x + 12 and HI = 10x 15, then x =_____.
- **11.** Given: Parallelogram *PQRS* with diagonal *PR*. Prove: $\triangle PQR \cong \triangle RSP$

12. Write an indirect proof.Given: △WIN is not isosceles.Prove: Quad WIND is not a rhombus.

MATHEMATICAL PRACTICES Reason Abstractly and Quantitatively

13. Ginger noticed that no matter the height of the adjustable stand for her electric piano, the keyboard remains level and centered over the stand. What has to be true about the legs of the stand? Explain.

