More About Quadrilaterals

A 4-gon Conclusion Lesson 16-1 Proving a Quadrilateral Is a Parallelogram

Learning Targets:

- Develop criteria for showing that a quadrilateral is a parallelogram.
- Prove that a quadrilateral is a parallelogram.

SUGGESTED LEARNING STRATEGIES: Think-Pair-Share, Group Presentation, Discussion Groups, Visualization

In a previous activity, the definition of a parallelogram was used to verify that a quadrilateral is a parallelogram by showing that both pairs of opposite sides are parallel.

- H (2, 5) I (6, 5) **1.** Given quadrilateral *CHIA*: **a.** Find the slope of each side. **b.** Use the slopes to explain how you know C(0, 0)A (4, 0) quadrilateral CHIA is a parallelogram. **2.** Given quadrilateral *SKIP* with SK = IP and Κ S KI = SP. **a.** $\triangle PSI \cong$ ______. Explain. **b.** $\angle SIP \cong$ ______ and $\angle PSI \cong$ ______. Explain. **c.** $\overline{SK} \parallel \overline{IP}$ and $\overline{KI} \parallel \overline{SP}$ because **d.** Complete the theorem. Theorem If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a _____.
- **3.** Given quadrilateral *WALK* with coordinates W(8, 7), A(11, 3), L(4, 1), and K(1, 5). Use the theorem in Item 2 to show that \Box *WALK* is a parallelogram.

ACTIVITY 16

Lesson 16-1 Proving a Quadrilateral Is a Parallelogram

- **4.** Given $\Box WXYZ$ with $\overline{WX} || \overline{ZY}$ and $\overline{WX} \cong \overline{ZY}$. **a.** $\triangle WZX \cong$ _____. Explain.
 - **b.** Construct viable arguments. Explain why $\overline{WZ} \parallel \overline{XY}$.
 - **c.** Complete the theorem.

Theorem If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a _____.

Given □GOLD with coordinates G(-1, 0), O(5, 4), L(9, 2), and D(3, -2). Use the theorem in Item 4 to show that □GOLD is a parallelogram.

Now you can prove a theorem that can be used to show that a given quadrilateral is a parallelogram.

Example A

Theorem If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Given: $\Box POLY$ with $\angle P \cong \angle L$ and $\angle O \cong \angle Y$

Prove: \square *POLY* is a parallelogram.

Statements	Reasons
1. $\Box POLY$ with $\angle P \cong \angle L$ and $\angle O \cong \angle Y$	1. Given
2. $m \angle P = m \angle L$ and $m \angle O = m \angle Y$	2. Def. of congruent angles
3. $m \angle P + m \angle O + m \angle L + m \angle Y = 360^{\circ}$	3. The sum of the measures of the interior angles of a quadrilateral is 360°.
4. $m \angle P + m \angle O + m \angle P + m \angle O = 360^{\circ}$	4. Substitution Property
5. $2m \angle P + 2m \angle O = 360^{\circ}$	5. Simplify.
6. $m \angle P + m \angle O = 180^{\circ}$	6. Division Property of Equality
7. $m \angle P + m \angle Y + m \angle P + m \angle Y = 360^{\circ}$	7. Substitution Property
$8. 2m \angle P + 2m \angle Y = 360^{\circ}$	8. Simplify.

Lesson 16-1 Proving a Quadrilateral Is a Parallelogram

Statements	Reasons		
9. $m \angle P + m \angle Y = 180^{\circ}$	9. Division Property of Equality		
10. $\overline{PY} \parallel \overline{OL}$ and $\overline{PO} \parallel \overline{YL}$	10. If two lines are intersected by a transversal and a pair of consecutive interior angles are supplementary, then the lines are parallel.		
11. \square <i>POLY</i> is a parallelogram.	11. Def. of a parallelogram		

Try These A

Write a proof using the theorem in Example 1 as the last reason.

6. Given $\Box PLAN$ whose diagonals, \overline{PA} and \overline{LN} , bisect each other.

Complete the statements.

a. $\triangle LEP \cong$ _____ and $\triangle LEA \cong$ _____. Explain.

b. $\angle ALE \cong$ _____ and $\angle ELP \cong$ _____. Explain.

- **c.** Explain how the information in part b can be used to prove that $\Box PLAN$ is a parallelogram.
- **d.** Complete the theorem.

Theorem If the diagonals of a quadrilateral _____, then the quadrilateral is a _____.

- 7. Given □ *THIN* with coordinates *T*(3, 3), *H*(5, 9), *I*(6, 5), and *N*(4, -1).
 a. Find the coordinates for the midpoint of each diagonal.
 - **b.** Do the diagonals bisect each other? Explain.
 - c. The best name for this quadrilateral is:A. quadrilateralB. kiteC. trapezoid

D. parallelogram

8. Summarize this part of the activity by making a list of the five ways to prove that a quadrilateral is a parallelogram.

Check Your Understanding

- **9.** Explain why showing that only one pair of opposite sides of a quadrilateral are parallel is not sufficient for proving it is a parallelogram.
- **10.** Three of the interior angle measures of a quadrilateral are 48°, 130°, and 48°. Is the quadrilateral a parallelogram? Explain.

LESSON 16-1 PRACTICE

Make use of structure. Tell what theorem can be used to prove the quadrilateral is a parallelogram. If there is not enough information to prove it is a parallelogram, write "not enough information."

Three vertices of a parallelogram are given. Find the coordinates of the fourth vertex.

- **15.** (1, 5), (3, 3), (8, 3)
- **16.** (-5, 0), (-2, -4), (3, 0)

Find the values of *x* and *y* that make the quadrilateral a parallelogram.

Learning Targets:

- Develop criteria for showing that a quadrilateral is a rectangle.
- Prove that a quadrilateral is a rectangle.

SUGGESTED LEARNING STRATEGIES: Think-Pair-Share, Create Representations, Group Presentation, Discussion Groups

- Complete the following definition.
 A rectangle is a parallelogram with ______.
- **2. a.** Complete the theorem.

Theorem If a parallelogram has one right angle, then it has ______ right angles, and it is a ______.

- **b.** Use one or more properties of a parallelogram and the definition of a rectangle to explain why the theorem in Item 1 is true.
- **3.** Given \square WXYZ.

a. If \Box *WXYZ* is equiangular, then find the measure of each angle.

b. Complete the theorem.

Theorem If a quadrilateral is equiangular, then it is a ____

4. Make sense of problems. Identify the hypothesis and the conclusion of the theorem in Item 3. Use the figure in Item 3.

Hypothesis:

Conclusion:

5. Write a proof for the theorem in Item 3.

6. Given $\square OKAY$ with congruent diagonals, *OA* and *KY*.

- **a.** List the three triangles that are congruent to $\triangle OYA$, and the reason for the congruence.
- **b.** List the three angles that are corresponding parts of congruent triangles and congruent to $\angle OYA$.
- **c.** Find the measure of each of the angles in part b.
- **d.** Complete the theorem.

ACTIVITY 16

My Notes

continued

Theorem If the diagonals of a parallelogram are _____, then the parallelogram is a _____.

- **7.** Given *□ABCD* with coordinates *A*(1, 0), *B*(0, 3), *C*(6, 5), and *D*(7, 2).
 - **a.** Show that $\square ABCD$ is a parallelogram.
 - **b.** Use the theorem in Item 6 to show that $\Box ABCD$ is a rectangle.
- **8.** Write a two-column proof using the theorem in Item 6 as the last reason.

Given: $\square GRAM$

 $\triangle GRM \cong \triangle RGA$

Prove: \square *GRAM* is a rectangle.

9. Summarize this part of the activity by making a list of the ways to prove that a quadrilateral (or parallelogram) is a rectangle.

Check Your Understanding

- **10.** Jamie says a quadrilateral with one right angle is a rectangle. Find a counterexample to show that Jamie is incorrect.
- **11.** Do the diagonals of a rectangle bisect each other? Justify your answer.

LESSON 16-2 PRACTICE

Three vertices of a rectangle are given. Find the coordinates of the fourth vertex.

- **12.** (-3, 2), (-3, -1), (3, -1)
- **13.** (-12, 2), (-6, -6), (4, 2)
- **14.** (4, 5), (-3, -4), (6, -1)

Find the value of *x* that makes the parallelogram a rectangle.

17. Model with mathematics. Jill is building a new gate for her yard as shown. How can she use the diagonals of the gate to determine if the gate is a rectangle?

My Notes

© 2015 College Board. All rights reserved.

		. 5		(1915) (1917년 1917년) 1917년 - 1917년 1917년 - 1917년 1917년 1917년 - 1917년 1
	My	y Not	tes	Learning Targets:
			_	 Develop criteria for showing that a quadrilateral is a rhombus.
	_		_	 Prove that a quadrilateral is a rhombus.
	_	_	_	1
	-			SUGGESTED LEARNING STRATEGIES: Think-Pair-Share, Create
				Representations, Group Presentation, Discussion Groups
				1. Complete the following definition.
				A rhombus is a parallelogram with
	_		_	2. a. Complete the theorem.
				Theorem If a parallelogram has two consecutive congruent
				Theorem If a parallelogram has two consecutive congruent sides, then it has congruent sides, and it is a
				······································
				b. Use one or more properties of a parallelogram and the definition of a
				rhombus to explain why the theorem in Item 2a is true.
	_		_	
				3. Complete the theorem.
			_	
				Theorem If a quadrilateral is equilateral, then it is a
			_	4. Write a paragraph proof to explain why the theorem in Item 3 is true.
	_	_	_	
			_	5. Given $\Box KIND$ with $\overline{KN} \perp \overline{ID}$.
			_	К
	_			
				Ň
				a. List the three triangles that are congruent to $\triangle KXD$, and give the
				reason for the congruence.
	_			
				b. List all segments congruent to <i>KD</i> and explain why.
				c. Complete the theorem.
				Theorem If the diagonals of a parallelogram are, then
				the parallelogram is a

Lesson 16-3 Proving a Quadrilateral Is a Rhombus

- **6.** Given $\Box BIRD$ with coordinates B(-2, -3), I(1, 1), R(6, 1), and D(3, -3).
 - **a.** Show that \square *BIRD* is a parallelogram.

- **b.** Use the theorem in Item 5 to show \Box *BIRD* is a rhombus.
- **7.** Given \Box WEST with \overline{TE} that bisects \angle WES and \angle WTS.

- **a.** List all angles congruent to $\angle 1$ and explain why.
- **b.** In $\triangle WET$, $\overline{WT} \cong$ _____. In $\triangle SET$, $\overline{ST} \cong$ _____. Explain.
- **c.** Complete the theorem. **Theorem** If a diagonal bisects ______ in a parallelogram, then the parallelogram is a ______.
- **8. Construct viable arguments.** Write a proof that uses the theorem in Item 7 as the last reason.

Given: □*BLUE*

© 2015 College Board. All rights reserved.

 $\triangle BLE \cong \triangle ULE$

Prove: $\square BLUE$ is a rhombus.

9. Summarize this part of the activity by making a list of the ways to prove that a quadrilateral is a rhombus.

Check Your Understanding

10. Can a rectangle ever be classified as a rhombus as well? Explain.

LESSON 16-3 PRACTICE

Three vertices of a rhombus are given. Find the coordinates of the fourth vertex.

- **11.** (-2, -8), (3, -3), (-9, -7)
- **12.** (-1, 2), (-1, -1), (2, 1)
- **13.** (1, 1), (-1, -2), (1, -5)
- **14.** Find the value of *x* that makes the parallelogram a rhombus.

15. Reason quantitatively. LaToya is using a coordinate plane to design a new pendant for a necklace. She wants the pendant to be a rhombus. Three of the vertices of the rhombus are (3, 1), (-1, -1), and (1, -2). Assuming each unit of the coordinate plane represents one centimeter, what is the perimeter of the pendant? Round your answer to the nearest tenth.

Learning Targets:

- Develop criteria for showing that a quadrilateral is a square.
- Prove that a quadrilateral is a square.

SUGGESTED LEARNING STRATEGIES: Think-Pair-Share, Create Representations, Group Presentation, Discussion Groups

- **1.** Given $\square JKLM$.
 - **a.** What information is needed to prove that \Box *JKLM* is a square?

- **b.** What additional information is needed to prove that *□JKLM* is a square? Explain.
- **c.** What additional information is needed to prove that rectangle *JKLM* is a square? Explain.
- **d.** What additional information is needed to prove that rhombus *JKLM* is a square? Explain.
- **2.** Given $\Box DAVE$ with coordinates D(-1, 1), A(0, 7), V(6, 6), and E(5, 0). Show that $\Box DAVE$ is a square.

- 3. Critique the reasoning of others. Several students in a class made the following statements. Decide whether you agree with each statement. If you disagree, change the statement to make it correct.
 a. A quadrilateral with congruent diagonals must be a rectangle.
 - **b.** A parallelogram with two right angles must be a square.
 - **c.** A quadrilateral with a pair of opposite parallel sides is always a parallelogram.
 - **d.** A rhombus with four congruent angles is a square.

Check Your Understanding

ACTIVITY 16

My Notes

continued

4. Elena has a garden with congruent sides, as shown below. Describe two different ways to show the garden is square.

LESSON 16-4 PRACTICE

The coordinates of a parallelogram are given. Determine whether the figure is a square.

- **5.** (-2, 3), (3, 3), (3, 0), (-2, 0)
- **6.** (0, 1), (-1, 3), (1, 4), (2, 2)
- **7.** (3, 6), (6, 2), (-2, 3), (-5, 7)
- **8.** (3, 8), (-1, 6), (1, 2), (5, 4)
- **9. Express regularity in repeated reasoning.** Find the length of the diagonal of a square with three of its vertices at (1, 0), (0, 0), and (0, 1). Then find the length of the diagonal of a square with three of its vertices at (2, 0), (0, 0), and (0, 2). Finally, find the length of the diagonal of a square with three of its vertices at (3, 0), (0, 0), and (0, 3). Use your findings to make a conjecture about the length of the diagonal of a square with three of its vertices at (*s*, 0), (0, 0), and (0, *s*).

ACTIVITY 16 PRACTICE

Write your answers on notebook paper. Show your work.

Lesson 16-1

- Given □ RSTU with coordinates R(0, 0), S(-2, 2), T(6, 6), and U(8, 4).
 - **a.** Show that $\square RSTU$ is a parallelogram by finding the slope of each side.
 - **b.** Show that $\Box RSTU$ is a parallelogram by finding the length of each side.
 - **c.** Show that $\Box RSTU$ is a parallelogram by showing that the diagonals bisect each other.
- **2.** Write a proof using the theorem in Item 2 of Lesson 16-1 as the last reason.

Prove: □ACDF

3. Write a proof using the theorem in Item 4 of Lesson 16-1 as the last reason.

Given: □JKLM

X is midpt of \overline{JK} . Y is midpt of \overline{ML} .

Prove: $\Box JXLY$

- **4.** Which of the following is not a sufficient condition to prove a quadrilateral is a parallelogram?
 - **A.** The diagonals bisect each other.
 - **B.** One pair of opposite sides are parallel.
 - **C.** Both pairs of opposite sides are congruent.
 - **D.** Both pairs of opposite angles are congruent.
- **5.** Show that the quadrilateral with vertices (-2, 3), (-2, -1), (1, 1), and (1, 5) is a parallelogram.

6. Which of the following additional pieces of information would allow you to prove that *ABCD* is a parallelogram?

Lesson 16-2

7. Each of the following sets of given information is sufficient to prove that *□SPAR* is a rectangle *except*:

- **A.** \Box *SPAR* and \angle *SPA* $\cong \angle$ *PAR*
- **B.** SK = KA = RK = KP
- **C.** \Box SPAR and \angle SKP $\cong \angle$ PKA **D.** \angle RSP $\simeq \angle$ SPA $\simeq \angle$ PAR $\simeq \angle$ ARS
- **8.** Given $\Box FOUR$ with coordinates F(0, 6), O(10, 8), U(13, 3), and R(3, 0). Show that $\Box FOUR$ is not a rectangle.
- **9.** Write an indirect proof.

Given: $CE \neq DF$

Prove: \Box *CDEF* is not a rectangle.

- 10. What is the best name for a quadrilateral if the diagonals are congruent and bisect each other?
 A. parallelogram
 B. rectangle
 C. kite
 D. trapezoid
- **11.** Three vertices of a rectangle are (-4, -3), (8, 3), and (5, 6). Show that the diagonals are congruent.

More About Quadrilaterals A 4-gon Conclusion

Lesson 16-3

12. Each of the following sets of given information is sufficient to prove that *□HOPE* is a rhombus *except*:

- **A.** HX = XP = XE = XO
- **B.** OH = OP = PE = HE
- **C.** \Box HOPE and \angle HXO $\cong \angle$ OXP
- **D.** \square *HOPE* and *HE* = *PE*
- **13.** Given $\Box DRUM$ with coordinates D(-2, -2), R(-3, 3), U(2, 5), and M(3, 0). Show that $\Box DRUM$ is not a rhombus.
- **14.** Write a proof using the theorem in Item 5 of Lesson 16-3 as the last reason.

Given: *□NIGH*

 $\triangle NTI \cong \triangle NTH$

Prove: \square *NIGH* is a rhombus.

Lesson 16-4

15. Write a proof.

C. rhombus

```
Given: \Box PEAR, \overline{PE} \perp \overline{EA};
\overline{PE} \cong \overline{AE}
```

Prove: $\square PEAR$ is a square.

16. Given □SOPH with coordinates S(-8, 0), O(0, 6), P(10, 6), and H(2, 0). What is the best name for this quadrilateral?
A. parallelogram
B. rectangle

D. square

17. What is the best name for an equilateral quadrilateral whose diagonals are congruent?
A. parallelogram
B. rectangle
C. rhombus
D. square

MATHEMATICAL PRACTICES Look For and Make Use of Structure

18. Why is every rhombus a parallelogram but not every parallelogram a rhombus? Why is every square a rectangle but not every rectangle a square? Why is every square a rhombus but not every rhombus a square?